
IRAF in the Nineties

Doug Tody

1

National Optical Astronomy Observatories, Tucson, AZ 85726

Abstract. The IRAF system (Image Reduction and Analysis Facility)

has been under development since 1981 and in use since 1984. Currently,

in 1992, IRAF is a mature system with hundreds of applications which

is in wide use within the astronomical community. After a brief look at

the current state of IRAF, this paper focuses on how the IRAF system

is expected to develop during the coming decade. Certain key new tech-

nologies or trends which any new data analysis system will need to deal

with to be viable in the nineties and beyond are discussed. An overview

of the planned enhancements to the IRAF system software is presented,

including work in the areas of image data structures, database facilities,

networking and distributed applications, display interfaces, and user in-

terfaces.

1. Introduction

The IRAF data reduction and analysis system has been around since 1981. To-

day IRAF is a mature system with hundreds of applications which is supported

on all major platforms. Many institutions, projects, and individuals around the

U.S. and the world have developed software for IRAF. Some of these packages

are comparable in size to the IRAF core system itself.

At the present time there are half a dozen large groups developing software

for IRAF, plus many individuals or small groups. Coordination of the work be-

ing done by the large groups is the responsibility of the IRAF TWG (Technical

Working Group), an interagency group which oversees IRAF software develop-

ment. Scienti�c review of IRAF development is provided by an IRAF User's

Committee, which oversees IRAF as a whole and which reports to NOAO, by

additional User's Committees reporting on the various projects developing large

layered packages for IRAF, and by the sta� and management of the institu-

tions funding IRAF development. IRAF is used primarily by the ground based

astronomy (NSF) and NASA space astrophysics communities.

A list of the IRAF layered packages currently installed at NOAO/Tucson is

shown in Figure 1, to illustrate the variety of packages available. This list is not

all-inclusive, i.e., there are additional layered packages available for IRAF other

1

NOAO is operated by AURA, Inc. under contract to the National Science Foundation.

1



than those shown here, which were the ones which happened to be installed at

NOAO when this �gure was prepared. The standard IRAF distribution itself,

consisting of the core IRAF and NOAO package trees, contains about 50 ad-

ditional packages, or several hundred tasks, totaling approximately 1.3 million

source lines. The core IRAF system includes the IRAF system software (host

system interface, run time and programming environments, command language

and other user interfaces, and core applications) and is required to compile and

run any layered software.

adccdrom tools for accessing ADC CD-ROM

ccaccq IRAF CCD data acquisition

color prototype RGB rendering tasks

ctio CTIO local tasks

demos IRAF demos

ftools FITS tools package

grasp GONG data processing (helioseismology)

ice IRAF CCD data acquisition

iue tools for importing IUE spectral data into IRAF

mem0 maximum entropy image restoration

nlocal NOAO/Tucson local tasks

nso Solar astronomy

spptools SPP programming utilities

steward Steward observatory local tasks

stsdas STScI (HST) data processing

tables STScI table tools package

vol volume rendering

xray SAO x-ray data analysis package

Figure 1. IRAF layered packages installed at NOAO (Dec. 1992)

As of late 1992 the current release of IRAF, which is still in distribution,

is version 2.10. As of December 1992 there were a total of 1068 logged distri-

butions of the previous version of IRAF, V2.9, of which 196 distributions were

tape distributions mailed to the user at cost, and 872 distributions were down-

loaded via anonymous ftp from the IRAF network archive on iraf.noao.edu. An

unknown number of additional distributions were downloaded via DECNET net-

work transfer (we don't know how many, as we log only ftp �le transfers). These

statistics count only distributions leaving NOAO; since the system is freely avail-

able, we have no way of recording redistribution of the system at remote sites or

within large institutions. IRAF site support tra�c totals over 5000 email mes-

sages or phone calls per year, counting both incoming and outgoing messages.

Based on the number of distributions and the site support tra�c we estimate

there are currently several thousand active users of IRAF.

The remainder of this paper focuses on where IRAF is headed over the

remainder of this decade. We look �rst at some key new technologies that we feel

IRAF (or any modern astronomical data analysis system) must use e�ectively

to be competitive by the end of the decade. Some pitfalls that we feel system

developers would be wise to consider are also discussed. Finally, we summarize

the work planned for the next few years to enhance the IRAF system software

to meet these new challenges.

2



2. Key new technologies for the next decade

IRAF is a long term project. Most of the software or hardware technologies

upon which IRAF is based typically have a lifetime of only 5 or 10 years -

considerably less than the expected lifetime of the IRAF software. To remain

up to date it is necessary to make use of new technology, but one must do so

carefully to avoid tying the software irrevocably to a technology which will one

day become obsolete. It is not easy to change a large system once a direction

has been chosen, so one must take the long term view, always planning 5 to 10

years in the future, trying to visualize what future computer systems will be like

and what we want our software to look like on those systems.

2.1. Key new technologies

The following are some key new technologies and technological issues or trends

which we feel any modern data analysis system should be concerned with.

User interfaces

As computer systems become more powerful, software systems are becoming

larger and more complex. People do a lot more with computers now than they

did a few years ago. Functionality and e�ciency, while still important, are no

longer the overriding concerns they once were. The issues of managing com-

plexity, and ease of use, are increasingly important concerns. The challenge of

user interface design is to make complex systems comprehensible, intuitive, and

easier to learn and use. Sophisticated user interfaces will make our software

more pleasant to use, and allow more complex and sophisticated applications to

be written. The days are past when the user interface can be taken for granted

when designing new software.

High level languages

Our common everyday computers are becoming so powerful that most of the

compute cycles now go to waste. At the level of compiled code, our computer

languages and software systems are becoming increasingly complex, to the point

where it may take an expert with years of training to deal with them. It may

be that the time is rapidly passing when casual users will do very much pro-

gramming with general purpose compiled languages like Fortran, C, C++, and

so on. The trend is towards higher level interpreted languages which are tai-

lored for a particular type of application. Whether these languages are syntax

driven, visual, or whatever does not really matter; in general the optimum type

of language depends upon how the language will be used, and languages should

be customized for a particular application. In the future, users will still develop

custom applications, but they will increasingly do so using sophisticated, high

level, application speci�c custom languages which are embedded in feature-rich

data processing environments.

Networking and distributed objects and data

Our computers are getting powerful enough that for many applications, further

gains in compute power won't make a whole lot of di�erence. A powerful com-

3



puter and sophisticated software aren't worth much unless one has data or other

raw information of some type to process, analyze, or query. Fortunately a new

way has been found to expand the capability of a computer system: the growth

of global networks is opening up a whole new dimension on what we can do with

computers. It is already the case that one can do wondrous things with even the

simplest hand held computer - so long as it is connected to the global networks.

The networks give us access to an inconceivable amount of data or information

of various types. Not only do the networks provide access to vast amounts of

raw information, they make it possible to export arbitrary services via the net-

work. Rather than export data or software, one can now export services which

remote clients can access at runtime to do any number of interesting things. We

are only just starting to learn how to make use of the global networks, but it is

already clear that the networks will change forever how we do computing, and

how we use computers.

Object oriented software structure and methodology

Every few years something new comes along (e.g., AI, CASE, HyperCard, etc.)

which proponents claim will revolutionize how we do computing. Most of these

\silver bullets", useful though they may be in some applications, are oversold and

after a time something else gets all the press. The latest such hot item is object

oriented programming (OOP). The journals are full of talk about object oriented

languages, databases, programming tools, and so on. This time it is not just

another overhyped product though. The object oriented approach to software

development and software design is probably the most important development

in software engineering since structured programming in the 80's. In fact it is a

natural outgrowth of the best software practices of the 80's.

What is important about object orientation is not a particular language,

commercial product, or other tool, but the concepts and methodology underly-

ing the object oriented approach to software development and systems design.

In particular, the object oriented approach places a special emphasis on the

conceptual modeling of the objects (classes) comprising a software system. This

emphasis on conceptual modeling, and the encapsulation or information hiding

that is a natural part of the object oriented approach, are fundamentally impor-

tant in dealing with the complexity of large modern software systems. Other

elements of the object oriented approach such as subclassing and inheritance

are probably fundamental to a true object oriented software structure, but this

is a fairly speci�c software structure, and not necessarily the best one for all

applications. Like any technology, OOP will be better for some things than for

others, and we are still learning the limitations of this new technology and where

it can be used most e�ectively.

Database technology

There is nothing very new about database technology. To date though, astron-

omy has done little with database technology, beyond its obvious use for indexing

data archives. We think that there is much that could be done by combining,

e.g., database technology with a graphical user interface to perform sophisticated

queries of the catalogs produced by astronomical analysis programs such as are

4



produced by image classi�cation, source detection, and stellar or galaxy photom-

etry programs. Furthermore our data sets are becoming larger and increasingly

more complex, as is the way we access data, especially when we take network ac-

cess to remote databases into account. Database technology will eventually have

to be brought into play to e�ectively manage this increased complexity. Con-

ventional relational database technology will continue to be important for large

data archives and for some types of catalogs produced by analysis programs, but

object oriented database techniques will be better suited to the complex data

objects dealt with by our online analysis systems.

2.2. Concerns

In the process of employing all this new technology there are a number of things

to watch out for.

The coming OS wars

UNIX is king right now, but will this be the case ten years from now? Ten years

ago the dominant system in astronomy was the VAX running VMS. Today it is

the UNIX workstation. UNIX is a very good system and it (or more properly

its descendents) might still be the dominant system ten years from now, but

this is by no means certain. There is a very real possibility that the dominant

system for astronomers ten years from now could be the PC. Not the PC we

have now, but the PC we will have then, when a PC is more powerful than

the workstation of today, cheaper, portable, fully connected to the networks,

and capable of running \shrink wrapped" personal applications in addition to

specialized astronomical software. The engineering workstations and servers of

today will still be around, and they will be more powerful than ever, but an

increasing share of scienti�c computing is likely to be done on mass market PC

systems.

If the PC does so well then we cannot be certain that UNIX will still be the

predominant operating system ten years from now. We might instead be using an

operating system which was designed for the mass market, such as Windows/NT,

or conceivably even some future version of MacOS (most likely a mixture of all

these). UNIX may be more powerful, more elegant, more technically superior,

and less proprietary, but those criteria will not necessarily prove as compelling

to the mass markets as they have to the academic and engineering markets.

Even within the UNIX community there is still considerable variation in what

we call UNIX, and despite e�orts like POSIX there is no real evidence that

this situation will ever change. On the contrary, UNIX systems are becoming

increasingly complex and small di�erences are correspondingly magni�ed.

Window systems

In the past the main concern when porting software to a new platform was the

operating system. Operating system di�erences are still a concern, but not as

big a concern as in times past. A possibly more signi�cant problem, and one

which is perhaps being overlooked by many folks now writing software, is the

window system, or in the case of X, the window system toolkit. Modern window

systems are comparable in complexity to operating systems but the technology

5



is much newer, and is still evolving rapidly. It is likely that any window system

speci�c software written today will have to be thrown out and rewritten a few

years from now. Most window system speci�c software today would have to be

largely rewritten to \port" the application to a di�erent window system on a

di�erent platform. Despite these problems, most window system applications

written today are monolithic applications with the application speci�c functions

and user interface code tightly interwoven. Window systems may prove to be

the \assembly language" of the 90's.

Computer languages

In the past ten years the major players in the general computer languages arena

have changed, but the game has not. We have seen Fortran 77, K&R C, ANSI C,

Fortran 90, and lately C++, with others such as Ada, Pascal, and Objective C on

the sidelines. Computer languages are constantly evolving. Even given language

standards, implementations of a language by vendors on di�erent hardware vary

considerably. This is unlikely to ever change.

The evolution of computer languages is not a problem so long as one is

content to write disposable software. If the projected lifetime of a body of

software is ten years or longer, and the body of software is large enough that

rewriting it may not be practical, the evolution of languages is a serious problem

which may eventually cause the software to become obsolete, along with the

technology it has been tied to. Even in the short run, the variation in language

implementations on di�erent platforms can be a serious support headache if the

body of code is su�ciently large.

3. Major IRAF system software enhancements

In this section we describe the work being done to enhance the IRAF system

software. This is a long term e�ort extending over a period of years. Some of the

work discussed has already been completed, but much of it is either in progress

or still to be done.

The work presented here attempts to exploit the new technologies discussed

in the last section, while avoiding the pitfalls that can come from tying software

too closely to a particular technology. Existing technology is only useful up to

a point; much of the work discussed in this section is an outgrowth of the work

already done on the IRAF system, and re
ects problems some of which appear

to be unique (at some level) to astronomical data analysis.

The reader is assumed to already have some familiarity with the current

IRAF system software. The software described here is very extensive and it

is impossible in a short review article like this to go into very much detail, or

explain all the terminology used.

3.1. Image Structures

The term \image structures" refers to the representation of the primary data

type in IRAF, the image. In IRAF an image is not a simple picture, but an

6



arbitrarily complex data object. An image consists of an N-dimensional logical

data raster (sampled data array) plus various bits of associated information,

some of which may be quite complex objects in their own right. The logical

data raster need not be physically stored as a sampled data array, for example

in the case of event data the data is stored as an event list and sampled only

when the image is accessed. The information often associated with a data raster

includes history information, any attributes computed by analysis of the image

data, world coordinate systems, pixel or region masks, uncertainty or "noise"

information, and so on.

A common example of an image is a raw data image, i.e., an astronomical

observation. Examples of raw data images are a 1D spectrum, a 2D CCD data

frame, or a 3D Fabry-Perot or radio spectral image cube. Images of dimension

higher than 3 are rare in astronomy. Typical astronomical data sets can be quite

large, e.g. several gigabytes, perhaps consisting of thousands of small spectra,

or several hundred large 2D images. Individual images of 32 megabytes or larger

are occasionally seen.

high level image class

IMIO image i/o

image header access

IMIO header access

DFIO data�le manager (*)

FMIO �le manager

image kernels (internal to IMIO)

IKI image kernel interface

OIF old (original) image format

STF HST image format

PLF pixel list image format

QPF QPOE (event list) image format

FTF FITS image format

new format new DFIO based image format (*)

others HDS(?), \PC" image formats (*)

auxiliary classes

MWCS world coordinate systems

PMIO, PLIO, MIO pixel masks or lists

QPOE event list data �les

NFIO noise function package (*)

Figure 2. New Image Structures

When IRAF was �rst released some years ago the only image format con-

sisted of a pair of �les per image, one for the header and one for the pixel matrix,

with the header �le consisting of a �xed binary structure plus a variable number

of FITS cards (not a terribly 
exible or e�cient structure). Over time several

alternative image formats have been added, as well as support for some of the

auxiliary data objects associated with images. It has become increasingly di�-

cult to store all this information in the simple data structures provided by the

older IRAF image formats. The purpose of the new image structures project is

7



to provide a general, well integrated hierarchy of image object classes for 
exibly

and e�ciently representing a wide variety of image data.

The major components of the new image structures are summarized in Fig-

ure 2. The new image structures project is further along than most of the other

new software discussed in this paper; everything listed has been implemented

except for the items marked with an asterisk. This is a big project; some of the

subsystems listed here, e.g., MWCS, QPOE etc., are major projects in their own

right, and in total the new image structures code will likely exceed 100K lines,

not counting the lower level IRAF classes or other library code.

A key feature of the implementation of the image interface in IRAF is the

image kernel. An image kernel is the only part of IRAF that knows anything

about how an image is stored externally, i.e., the physical image format. The

image kernel implements a mapping between the physical image format and

the logical view of an image implemented in the runtime image descriptor used

to access an active image object. The image kernel can provide a standard

interface to a wide variety of image types, including odd things like photon event

lists, image masks, or image display server frame bu�ers, in addition to various

standard image raster disk �le formats. In principle IRAF can be integrated with

any external image processing system by implementing an IKI image kernel for

the image format de�ned by the external system. The best example of this is

FITS. The FITS image kernel also allows archival data, e.g. on CD-ROM or on

a remote network server, to be directly accessed by IRAF programs.

The main work remaining to be done to �nish the new image structures

project is to implement a new standard IRAF online image format based on

the general data�le manager (DFIO, discussed in the next section). This will

replace the existing OIF image format. The new format will make it possible to

simply and e�ciently group complex objects such as world coordinate systems,

pixel masks, and compressed pixel uncertainty arrays with pixel arrays to form

the objects we call images.

3.2. Database facilities

Managing complex data structures such as the image structures in a 
exible and

e�cient manner, while providing features such as data independence, machine

independence, a data recovery capability, transparent storage of arbitrarily large

data elements, capabilities for storing complex objects (not just simple tables),

indexing for e�cient lookup, and a good integration with the higher level IRAF

software, is a complex and demanding problem. The low level interface planned

to provide this capability for IRAF is DFIO, the data �le manager. DFIO

is layered upon FMIO, the �le manager, which is in turn layered upon IRAF

binary �le i/o (FIO). DFIO is a medium level interface designed for embedded

applications, e.g. it will be used internally within IMIO to store image data.

For the most part IRAF applications will not use DFIO directly, rather they

will deal with data at a higher level, e.g. via the image class.

One of the types of data DFIO will be capable of storing is the table, as

in a relational database. Hence, in addition to its use as an embedded inter-

face within IRAF system software to store complex data objects, DFIO will

provide a traditional relational database capability for applications such as cat-

8



alog access. Since IRAF already provides a builtin networking capability, DFIO

will automatically be usable in client-server applications to provide a distributed

database facility. To be able to access external, non-IRAF databases, a database

server architecture will be used (similar to the use of image kernels by IMIO).

3.3. Networking and distributed applications

Networking is an integral part of IRAF and IRAF has always been able to sup-

port distributed applications. In IRAF all access to external resources is via

the IRAF kernel. The IRAF kernel has a builtin remote procedure call facility

allowing kernel procedures to execute either locally or remotely. (This includes

all kernel procedures that access a named external resource, be it a �le, direc-

tory, tape drive, image display, process, or whatever). In a local reference the

procedure is executed directly; when the resource being accessed resides on a

remote node a custom RPC protocol layered upon the IRAF networking driver

is used to remotely execute the kernel procedure. The only system dependent

part of all this is the networking driver, which can use any standard message or

stream oriented transport layer, e.g. TCP/IP, DECNET, and so on. Since the

IRAF kernel provides a standard host interface, the routing or leaf nodes in a

distributed IRAF process tree can execute on host machines running any operat-

ing system to which IRAF has been ported. It is even possible to transparently

route RPC calls between di�erent networks, e.g. the Internet and SPAN.

There are still some signi�cant enhancements planned for the IRAF net-

working system but these are for the most part comparatively minor evolution-

ary enhancements. One of the most interesting enhancements being considered

is some sort of interface to non-IRAF servers, e.g. ftp or WAIS servers. This

would not provide the full capability of the IRAF kernel, but might work for

simple directory and �le access, and would allow any IRAF application to trans-

parently access arbitrary servers on the network whether or not they provide an

IRAF kernel server.

3.4. User Interfaces

In general, the IRAF system circa 1992 is very strong in terms of the functionality

provided, but is weak in the area of user interfaces. This directly re
ects the

priorities for IRAF development in the late 1980's, which emphasized getting

numbers out of the data. This meant new applications, and due to the common

environment, enhanced system support for these applications (e.g. the new

image structures). In the early 1990's, with a wealth of software now in the

system and more people than ever using IRAF, the emphasis has shifted towards

ease of use and improved user interaction and data display.

Enhancements to the IRAF user interfaces are planned in many areas. Two

of the most exciting are a general GUI (graphics user interface) capability, avail-

able to any IRAF application and capable of making full use of the advanced

capabilities of modern window systems, and less obviously, something called

minilanguage support.

Modern window systems are remarkably complex software systems, and the

�eld is still evolving rapidly, with many quite di�erent window systems and

9



Figure 3. Widget Server Architecture

window system toolkits being developed or in use. Using window user interfaces

e�ectively in scienti�c applications is challenging, as if one is not careful and

the wrong approach is taken, programmers may spend all their time struggling

with complex window system software and not get any science software written.

Due to the complexity of the �eld, learning a particular toolkit or user interface

builder is time consuming and a considerable investment in time is required

to make use of any particular tool. A wrong decision could result in a great

deal of wasted time, particularly for a large project where many people may be

developing software.

After considerable time spent studying window systems and graphics user

interfaces we think we have found a solution to this problem. It is called the

widget server. In the widget server architecture the application and the user

interface are in two separate processes. The application is a type of minilanguage

with a simple parsed command line interface. The user interface resides in

the widget server process. When an application starts up it downloads a text

�le to the widget server containing the user interface to be executed. This

de�nes all the widgets forming the user interface as well as the code to be

executed (interpreted) while the user interface executes. During execution, the

user interface (widget server) and client application exchange commands and

data via interprocess communication.

This architecture has many advantages, e.g., a complete separation of the

user interface and functional code, and a high level interpreted interface to the

window system for the programmer, making it easy to develop GUIs (and easy

for the user to customize the user interface). Since only the widget server knows

about a particular window system or toolkit, the widget server also provides win-

dow system and toolkit independence, allowing a new window system or toolkit

to be supported merely by implementing a new version of the widget server.

The widget set provided by the widget server will include the standard toolkit

text, button, scollbar, list, geometry, etc. widgets, plus some custom widgets

(such as graphics and image display widgets) tailored to IRAF applications.

As powerful as the graphics user interface can be, it is not the only way

to do a user interface, nor is it necessarily the best type of user interface for

all interactive applications. A quite di�erent type of applications user interface

which is at least as powerful, and also well suited to complex applications, is the

context-based minilanguage. A minilanguage is a single program (IRAF task)

10



with a syntax driven, command line user interface. The program maintains an

internal state and successive input statements modify this state. The syntax,

command or function set, and internal data structures are customized for each

application. The individual functions are usually simple, but arbitrarily complex

operations can be performed by stringing together sequences of commands or

expressions. By designing an appropriate syntax very powerful applications-

speci�c languages can be devised.

A good language will be extensible, allowing users to de�ne new proce-

dures, link to external compiled routines, or interface external IRAF or host

tasks so that they appear as functions in the minilanguage. It will even be

possible to combine a graphics user interface with a minilanguage. For exam-

ple, the combination of the widget server with a minilanguage will provide both

a fully featured GUI capability and a powerful interpreted computing engine,

both programmable by the user without need to resort to low level compiled

languages. When all this is layered upon the IRAF environment, providing well

integrated access to powerful facilities such as the IRAF image structures and

a wealth of existing external tasks, the result will be high level applications of

unprecedented power, 
exibility, and sophistication.

Acknowledgments. Without the contributions of many people over the

years, the IRAF system we have now would not exist. The author particularly

wishes to thank Frank Valdes and Lindsey Davis of the NOAO IRAF group,

who wrote much of the IRAF software. STScI and SAO have made major

contributions to the system over the years and the IRAF project would not

be the same without their involvement. A grant from the NASA astrophysics

data program has made all the di�erence as IRAF use continued to grow while

the NOAO budget continued to shrink. Finally, we wish to thank the NOAO

directors and scienti�c sta� for their continuing support and enthusiastic use of

IRAF, and for their help in making IRAF a better system.

References

Tody, D., 1986, \The IRAF Data Reduction and Analysis System", in Instru-

mentation in Astronomy VI, David L. Crawford, Editor.

Hanisch, R. J. 1991, \STSDAS: The Space Telescope Science Data Analysis

System", in Data Analysis in Astronomy IV (Di Ges�u, V., Scarsi, L.,

Buccheri, R., Crane, P., Maccarrone, M.C., and Zimmermann, H.U., eds.,

Plenum Press, New York), 97.

Worrall, D.M., Conroy, M., DePonte, J., Harnden, F.R., Mandel, E., Murray,

S.S, Trinchieri, G. , VanHilst, M. , Wilkes, B.J., 1992, \PROS: Data

Analysis for ROSAT" in Data Analysis in Astronomy IV, eds. V. Di

Gesu et al., Plenum Press, 145.

Olson, E. C. and Christian, C. A., 1992, \The EUVE Guest Observer Analysis

Software." in Astronomical Data Analysis Software and Systems I.

See also the many technical papers describing the IRAF software, available in

iraf.noao.edu:iraf/docs.

11


