
The IRAF Data Reduction and Analysis System

Doug Tody

National Optical Astronomy Observatories
P.O. Box 26732, Tucson, Arizona, 85726

ABSTRACT

The Image Reduction and Analysis Facility (IRAF) is a general purpose software system for
the reduction and analysis of scientific data. The IRAF system provides a good selection of pro-
grams for general image processing and graphics applications, plus a large selection of programs
for the reduction and analysis of optical astronomy data. The system also provides a complete
modern scientific programming environment, making it straightforward for institutions using
IRAF to add their own software to the system. Every effort has been made to make the system as
portable and device independent as possible, so that the system may be used on a wide variety of
host computers and operating systems with a wide variety of graphics and image display devices.

1. Introduction

The IRAF project began in earnest in the fall of 1981 at Kitt Peak National Observatory (NOAO did not yet
exist at that time). The preliminary design of the system was completed early in 1982, and the first versions of the
command language (CL) and the applications programming environment were completed during 1982. The NOAO
IRAF programming group was formed in 1983. The first internal release of the system occurred at NOAO in 1984,
and a beta release of the system to a few outside sites occurred in 1985.

The Space Telescope Science Institute (STScI) selected IRAF to host their Science Data Analysis System
(SDAS) in December of 1983, and carried out the initial port of IRAF to VMS, as well as some CL extensions, dur-
ing 1984 and 1985. In June of 1985, UNIX/IRAF became the primary reduction and analysis facility at
NOAO/Tucson. By October the VMS version of the system was fully functional at NOAO on the newly installed
VAX 8600, which soon became our primary data processing system. By late 1985 the system had been ported to
such disparate systems as a Sun workstation running UNIX and to a Data General MV/10000 running AOS/VS (the
latter port was still in progress when this paper was written and was being undertaken by Steward Observatory, Univ.
of Arizona). In February of 1986 a limited public release of the system occurred, with UNIX and VMS versions of
the system being distributed to about 40 astronomical sites. The system is expected to be made generally available
sometime in 1987.

This paper describes the system as it existed in March of 1986, shortly after the first public release. The focus
of the paper is primarily on the IRAF system software as seen by the user and by the software developer, although
the NOAO science applications software is briefly introduced. The distinction is made because the IRAF system
software is expected to be used by numerous institutions to host the science software developed independently by
each institution. The NOAO and STScI science software packages are the first examples of this; similar undertakings
are already in progress, and more are expected in the future as the system becomes more mature and more widely
used. These science software systems are major projects in their own right and are best described elsewhere.

The purpose of this document is to present an overview of the IRAF system from the system designer’s point
of view. After a brief discussion of the global system architecture, we take a tour through the system, starting at the
user level and working down through the programming environments and the virtual operating system, and ending
with the host system interface. The emphasis is on the system design, on the functionality provided by the various
subsystems, and on the reasoning which went into the design. The reader is assumed to be familiar with the technol-
ogy and problems associated with large software systems and large software development projects.

2. System Architecture

2.1 Major System Components

The major components of the IRAF system are outlined in Figure 1. The command language, or CL, is the
user’s interface to IRAF. The CL is used to run the applications programs, which are grouped into two classes, the
system utilities and the scientific applications programs. Both the CL and all standard IRAF applications programs
depend upon the facilities of the IRAF virtual operating system (VOS) for their functioning. The VOS in turn
depends upon the kernel, the runtime component of the host system interface (HSI), for all communications with the
host system. All software above the host system interface is completely portable to any IRAF host, i.e., to any

- 2 -

system which implements the HSI. The system is ported by implementing the HSI for the new host; note that the
effort required to port the system is independent of the amount of code above the HSI, and once the system is in
place no additional effort is required to port new applications software.

Command Language (CL) user interface, command interpreter
Applications Programs system utilities, scientific applications programs
Virtual Operating System (VOS) the system libraries, all i/o interfaces
Host System Interface (HSI) bootstrap utilities, kernel primitives

Figure 1. Major System Components

From the point of view of the system structure, the CL is itself an applications program in that it uses only the
facilities provided by the IRAF VOS. In principle an applications program can do anything the CL can do, and mul-
tiple command languages can coexist within the same system. In practice only the CL is allowed to interact directly
with the user and spawn subprocesses, in order to provide a uniform user interface, and to minimize the kernel facili-
ties required to run an applications program. All standard IRAF applications programs can be run directly at the host
system level as well as from the CL, making it possible to run the science software on a batch oriented system which
is incapable of supporting the CL.

2.2 Process Structure

In normal interactive use IRAF is a multiprocess system. The standard process structure is depicted in Figure
2. The CL process handles all communications to the user terminal, which is usually a graphics terminal of some
sort. All applications programs run as concurrent subprocesses of the CL process. A single applications process will
usually contain many executable programs or compiled tasks; the CL maintains a process cache of connected but
idle (hibernating) subprocesses to minimize the process spawn overhead. If graphics i/o to a device other than the
graphics terminal is necessary, a graphics kernel process is connected to the CL as a subprocess.

The process cache always contains the process "x_system.e", which contains all the tasks in the system pack-
age. The system subprocess is locked in the cache by default. The remaining process cache slots (typically 2 or 3
slots) are dynamically assigned as tasks are run by the user. Up to 3 graphics kernels may be simultaneously con-
nected. The entire process structure is duplicated when a background job is submitted by the user from an interactive
CL.

CL GIO
subkernel

applications
process

Figure 2. IRAF Process Structure

The multiprocess architecture has significant flexibility advantages over the alternative single process and
chained process architectures. The system is highly modular and easily extended, allowing new versions of the CL
or a new graphics kernel to be tested or installed even while the system is in use, without having to relink all the
applications modules. New applications modules can be debugged outside the normal CL environment using host
system facilities, and then installed in the system while the system is in use without any affect on the rest of the sys-
tem. There is no limit to the number of applications packages which the system can support, nor is there any limit to
the number of graphics devices which the system can be interfaced to. Support for a new graphics device can be
added to a running system without any affect on the existing applications programs.

The multiprocess architecture also has significant efficiency advantages over less modular architectures.
Since most of the system software resides in independent processes, the amount of code which has to be linked into
an applications program is minimized, reducing the link time as well as the disk and memory requirements for an
executable. Since all users on a multiuser system use the same CL executable, graphics kernels, and other system
executables, significant savings in physical memory are possible by employing shared memory access to the execut-
ables. The ability of IRAF to link many tasks into a single executable promotes code sharing, reducing disk and
memory requirements and greatly improving interactive response by minimizing process connects. Paradoxically, the

- 3 -

use of multiple concurrent processes can actually improve performance by permitting pipelined execution, e.g., the
applications process can be busy generating graphics metacode while the CL or graphics kernel is waiting for i/o to a
graphics device.

The chief disadvantage of the IRAF process structure is the difficulty of error recovery in response to a user
interrupt or program abort. An interrupt may occur while all processes in the group are busily computing and pass-
ing messages and data back and forth via interprocess communication (IPC), making it necessary to terminate the
current task and clear and synchronize the entire IPC data path. That this problem is tractable at all is due to the
master/slave nature of the IPC protocol. At any one time there will be only one master process in the system. When
an interrupt occurs it is only the master process which is (logically) interrupted. If the task currently executing in the
master process does not intercept the interrupt and either ignore it or take some special action, control will pass to the
VOS error recovery code in the master process, which will oversee the synchronization and cleanup of the i/o system
before returning control to the CL.

3. The Command Language (CL)

3.1 Basic Concepts

The IRAF Command Language (CL) is the user’s interface to the IRAF system. The CL organizes the many
system and applications tasks (programs) into a logical hierarchy of packages. A package is a collection of logically
related tasks, and is represented to the user using a type of menu. Each task has its own local set of parameters.
To keep the calling sequence concise, each task has only a few required or query mode parameters. For maximum
flexibility, tasks may provide any number of optional hidden mode parameters as well, each with a reasonable
default value chosen by the programmer but modifiable by the user, either permanently or via a command line over-
ride.

A package is implemented as a special kind of task, and packages often contain "tasks" which are really sub-
packages, hence the logical organization of packages is a tree. A package must be loaded by typing its name before
any of the tasks therein can be executed or referenced in any other way by the CL. Loaded packages are organized
as a linear list, with the list order being the order in which the packages were loaded. References to tasks in loaded
packages are resolved by a circular search of this list, starting with the current package, which may be any package
in the set of loaded packages. If a task with the same name appears in more than one package, the package name
may optionally be specified to resolve the ambiguity. Note that is is not necessary to traverse the package tree to
execute a task in a loaded package.

3.2 Command Language Features

The most notable features of the IRAF command language are summarized in Figure 3. The CL is designed
to serve both as a command language and as an interpreted programming language. The emphasis in this initial
version of the CL has been on providing good command entry facilities. Extensive CL level programming facilities
are also provided in the current CL, but full development of this aspect of the CL is a major project which must wait
until development of the baseline IRAF system is completed.

d provides a uniform environment on all host systems
d package structure for organization and extensibility
d menus and extensive online help facilities
d concise command syntax similar to UNIX cshell
d i/o redirection and pipes; aggregate commands
d minimum match abbreviations for task and parameter names
d both local and global parameters, hidden parameters
d direct access to host system; foreign task interface
d parameter set editor; command history editor (edt, emacs, vi)
d background job submission (including queuing)
d logfile facility for recording all task invocations
d graphics and image display cursor mode facilities
d virtual filename facility; unix style pathnames to files
d programmable: procedures, C style expressions and control constructs

Figure 3. Selected Features of the IRAF Command Language

The basic IRAF command syntax is the same as that used in the UNIX cshell. Similar i/o redirection and
pipe facilities are provided, extended in the CL to provide support for the standard graphics streams. Background

- 4 -

job submission facilities are provided, including support for batch queues, control of job priority, and servicing of
parameter queries from background jobs after the job has been submitted. A cshell like history mechanism is pro-
vided, extended in the CL to record multiline command blocks rather than single command lines, and including a
builtin screen editor facility for editing old commands. Minimum match abbreviations are permitted for task and
parameter names, allowing readable (long) names to be used without sacrificing conciseness.

Extensive online help facilities are provided, including the package menu facility already mentioned, a utility
for listing the parameters of a task, as well as online manual pages for all tasks. An interactive cursor mode facility
provides a builtin graphics or image display control capability operable whenever a cursor is read by an applications
program, without need to exit the applications program. Cursor mode is discussed further in §6.6.

While the CL provides a fully defined, complete environment independent of the host system, an escape
mechanism is provided for interactively sending commands to the host system. In addition, host system tasks,
including user written Fortran or other programs, may be declared as IRAF foreign tasks and accessed directly from
the CL much like true IRAF tasks, permitting the use of the CL i/o redirection, background job submission, etc. facil-
ities for these tasks. A host system editor interface is provided so that the user may access their favorite editor from
within the IRAF environment. New IRAF programs and packages may be developed and tested from within the
IRAF environment, or programs (CL procedures) may be written in a C like dialect of the command language itself.

It is beyond the scope of this paper to attempt to discuss the user level features of the CL in any detail. The
reader is referred to any of the following references for additional information. A User’s Introduction to the IRAF
Command Language explains the basic use of the language, and the The IRAF User Handbook contains many exam-
ples as well as manual pages for the CL language features. The document Detailed Specifications for the IRAF Com-
mand Language presents the author’s original design for the CL, and although now rather dated contains information
about the conceptual design and inner workings of the CL not found in any of the more recent user oriented manuals.

3.3 Principles of Operation

With very few exceptions, all user interaction in IRAF is via the CL. This ensures a consistent user interface
for all applications programs, simplifies applications code, and provides maximum flexibility, since the CL (and
hence the user) controls all aspects of the environment in which a program is run. Applications programs do not
know if they are being used interactively or not, or even if they are being called from the CL. Indeed, any IRAF
program may be run at the host system level as well as from the CL, although the user interface is much more primi-
tive when the program is called at the host level.

The CL executes concurrently with the applications process, responding to parameter requests from the appli-
cations process, managing the standard i/o streams, processing graphics output and managing cursor input, and so on.
In effect the CL and the applications task are one large program, except that binding occurs at process connect time
rather than at link time. This makes it possible for programs to have a highly interactive, sophisticated user interface,
without linking enormous amounts of code into each executable. A further advantage is that since a single process is
used for all user interaction, the context in which a task executes is preserved from one task to the next, without need
to resort to inefficient and awkward techniques using disk files.

The CL recognizes a number of different types of tasks, most of which have already been mentioned. The
builtin tasks are primitive functions which are built into the CL itself. Script tasks are interpreted CL procedures.
Compiled tasks are IRAF programs written in some compiled language and executing in a connected subprocess
residing in the process cache. Lastly, foreign tasks are compiled host programs or host command scripts, which the
CL executes by sending commands to the host system. A special case of a builtin task is the cl task, the function of
which is to interpret and execute commands from a command stream, e.g., the user terminal.

All of these types of tasks are equivalent once the task begins executing, i.e., while a task is executing the
function of the CL is to interpret and execute commands from the task, until the task informs the CL that it has com-
pleted. If a command is received which causes another task to be run, the CL pushes a new task context on its con-
trol stack and executes the new task, popping the old context and resuming execution of the old task when the called
task terminates. Logout occurs when the original "cl" task exits. The key point here is that the CL functions the
same whether it is taking commands from the user, from a script, or from a compiled applications program. This is
known as the principle of task equivalence, and is fundamental to the design of the CL.

3.4 Extensibility

New tasks or entire packages may be added to the CL at any time by entering simple declarations, hence the
CL environment is easily extended by the user. The mechanism used to do this is the same as that used for the pack-
ages and tasks provided with the standard system, hence the user has full access to all the facilities used for the stan-
dard IRAF tasks, including the help mechanism. No changes have to be made to the standard system to add locally

- 5 -

defined packages and tasks. Conversely, a new version of the standard system can be installed without affecting any
local packages (provided there have been no interface changes).

4. Applications Software

4.1 System Packages

The IRAF applications packages are divided into two broad classes, the system packages and the scientific
reduction and analysis packages. In this section we introduce the system packages, which are listed in Figure 4.
When describing the applications packages, we list all packages which have been implemented or which we plan to
implement, since the purpose of this paper is as much to present the design of IRAF as to report its current state.
The status of each package is indicated in the table below, where done means that the package has reached its
planned baseline functionality (of course, all packages continue to evolve after they reach this state), incomplete
means that the package is in use but has not yet reached baseline functionality, in progress means the package is
actively being worked on but is not yet in use, and future means that work has not yet begun on the package. It
should be pointed out that each of these packages typically contains several dozen tasks, and many contain subpack-
ages as well. It is beyond the scope of this paper to delve into the contents of these packages in any detail.

package status (March 86)

dataio - Data input and output (FITS, cardimage, etc.) done
dbms - Database management utilities future

images - General image processing, image display incomplete
language - The command language itself done

lists - List processing incomplete
plot - General graphics utilities done

softools - Software tools, programming and system maintenance done
system - System utilities (file operations, etc.) done
utilities - Miscellaneous utilities done

Figure 4. System Packages

The system packages include both those packages containing the usual operating system utilities, e.g., for list-
ing directories or printing files, as well as those packages which are required by any scientific data processing sys-
tem, e.g., for general image processing and graphics. The conventional operating system utilities are found in the
system package. The language package contains those tasks which are built into the CL itself. The softools pack-
age contains the software development and system maintenance tools, including the HSI bootstrap utilities, i.e., the
compiler, librarian, the mkpkg utility (similar to the UNIX make), the UNIX tar format reader/writer programs, and
so on. The dbms package is the user interface to a planned IRAF relational database facility. The lists package con-
tains an assortment of tasks for operating upon text files containing tabular data, e.g., for performing a linear transfor-
mation on one or more of the columns of a list.

The dataio package contains a number of tasks for reading and writing data in various formats, including
FITS, cardimage, and a number of other more NOAO specific formats. These programs are typically used to read or
write magtape files, but all such programs can be used to operate upon a disk file as well, a useful alternative for sites
which have access to an electronic network. The plot package contains a number of vector graphics utilities, includ-
ing CL callable versions of all the NCAR graphics utilities (using the IRAF/GIO GKS emulator). The images pack-
age, which is actually a tree of related packages, contains the general image processing tasks plus the image display
and display control tasks.

4.2 Optical Astronomy Packages

The NOAO packages for the reduction and analysis of optical astronomy data are summarized in Figures 5
and 6. There are two categories of optical astronomy packages. The packages listed in Figure 5 are intended to be
of general use for any optical astronomy data, not just for data taken at an NOAO observatory with an NOAO instru-
ment. Since these are intended to be general purpose, instrument independent packages, naturally they are not
always the most convenient packages to use for reducing data from a specific instrument. The imred packages, sum-
marized in Figure 6, fulfill the need for easy to use or "canned" reduction procedures for specific instruments. In
many cases the tasks in the imred packages are CL scripts which fetch instrument specific parameters from the
image headers and call tasks in the more general, instrument independent packages. The list of imred packages is
continually growing as new instruments are supported.

- 6 -

package status (March 86)

artdata - Artificial data generation package in progress
astrometry - Astrometry package future

digiphot - Digital photometry package in progress
focas - Faint object detection and classification package future
imred - NOAO Instrument reduction packages done
local - Local user added tasks (not configuration controlled) -

onedspec - One dimensional spectral reduction and analysis package done
twodspec - Two dimensional spectral reduction and analysis packages done
surfphot - Galaxy surface brightness analysis package future

Figure 5. General Optical Astronomy Reduction and Analysis Packages

The artdata package consists of tasks for generating various types of test data, e.g., pure test images, artificial
starfields, artificial spectra, and so on. The astrometry package is used to obtain astrometric coordinates for objects
in stellar fields. The digiphot package contains a collection of tasks for automatically generating starlists, for per-
forming aperture photometry on an image (fractional pixel, multiple concentric apertures, polygonal apertures), and
for performing photometry using point spread function fitting techniques. The focas package performs faint object
detection and classification (e.g., to discriminate between faint stars and galaxies), and will be largely a port of the
existing UNIX package of the same name to IRAF. The onedspec package provides a standard set of tools for the
dispersion correction, flux calibration, and analysis of one dimensional spectra. The twodspec package performs the
same operations for two dimensional spectra of various types, and currently consists of the subpackages longslit,
multispec, and apextract. The surfphot package fits ellipses to the isophotes of galaxies.

package status (March 86)

imred.bias - General bias subtraction tools done
imred.coude - Coude spectrometer reductions done

imred.cryomap - Cryogenic camera / multi-aperture plate reductions done
imred.dtoi - Density to intensity calibration in progress

imred.echelle - Echelle spectra reductions done
imred.generic - Generic image reductions tools done

imred.iids - KPNO IIDS spectral reductions done
imred.irs - KPNO IRS spectral reductions done

imred.vtel - NSO (solar) vacuum telescope image reductions done

Figure 6. Current NOAO Instrument Reduction Packages

The imred packages perform general CCD image reductions, as well as the reductions for other more special-
ized instruments. The cryomap, iids, irs, and vtel packages deal with specific NOAO instruments and are probably
only of interest to people who observe at an NOAO observatory. The remaining packages should be useful for any-
one with CCD, Echelle, or photographic (density) data.

4.3 Third Party Software

In addition to the applications packages already mentioned, all of which are being developed by the IRAF
group at NOAO, we anticipate that a fair amount of third party software will eventually be available for use within
IRAF as well. The STScI SDAS software is the first example of this. Third party software appears within IRAF as a
new branch on the package tree. There is no limit on the size of such an addition, and in the case of SDAS we find a
suite of packages comparable to the IRAF system itself in size. As of this writing, a number of other groups are
either actively developing additional third party software or are contemplating doing so, but it would be inappropriate
to be more specific until these packages are announced by the institutions developing them.

Third party software may unfortunately not meet IRAF standards, hence the software may not be usable on all
IRAF hosts, nor usable with all the graphics and image display devices supported by IRAF. Applications software
which is built according to IRAF standards is automatically portable to all IRAF hosts without modification (although
some debugging is typically required on a new host), hence sites considering adding their own software to IRAF are
encouraged to model their software after the existing NOAO IRAF applications.

5. Programming Environments

- 7 -

5.1 Overview

It is unrealistic to expect any finite collection of applications packages to provide everything that a particular
user or institution needs. To be most useful a system must not only provide a good selection of ready to use applica-
tions software, it must make it easy for users to add their own software, or to modify the software provided. Further-
more, implementation and development of even the standard IRAF applications packages is a major project requiring
many years of effort, hence the system must minimize the effort required for software development by professional
programmers as well as by users. The solution to these problems is a programming environment, or more pre-
cisely, a set of programming environments, each tailored to a particular type of software and to the level of expertise
expected from the programmer.

The term programming environment refers to the languages, i/o libraries, software tools, and so on comprising
the environment in which software development takes place. A good programming environment will provide all the
facilities commonly required by applications programs, ideally in a form which is high level and easy to use without
sacrificing flexibility and efficiency. The facilities provided by the environment should be layered to provide both
high and low level facilities and to maximize code sharing and minimize program size. The programming environ-
ment should provide machine and device independence (code portability) as an inherent feature of the environment,
without requiring an heroic sacrifice or transcendent wisdom on the part of the programmer to produce portable code.

IRAF currently provides three quite different programming environments. The highest level environment is
the CL, where the programming language is the command language itself, and the environment is defined by the CL
callable packages and tasks. This is a very attractive programming environment for the scientist/user because of its
high level, interactive nature, but much work remains to be done before this environment reaches its full potential.
At the opposite extreme is the host Fortran interface, which allows Fortran programs written at the host level, outside
of IRAF, to access IRAF images and to be called from the CL. This is of interest because it allows existing Fortran
programs to be productively used within IRAF with minimal modifications, and because it makes it possible for users
to write image operators immediately without having to learn how to use a more complex (and capable) environment.

The third programming environment is that defined by the IRAF VOS. This is the most powerful and best
developed environment currently available, and is used to implement nearly all of the existing IRAF systems and
applications software. Full access to the VOS facilities and full portability are available only for programs written in
the IRAF SPP (subset preprocessor) language, the language used to implement the VOS itself. A C language inter-
face is is also available, but only a small subset of the VOS facilities are available in this interface, and there are seri-
ous portability problems associated with the use of this interface in applications programs (it is currently used only in
highly controlled systems applications, i.e., the CL). While IRAF does not currently provide a Fortran interface to
the VOS facilities, Fortran subroutines may be freely called from SPP programs, allowing major portions of an appli-
cations program to be coded in Fortran if desired. There are, however, serious portability problems associated with
the direct use of Fortran for applications programs.

Only the SPP language adequately addresses the problem of providing full functionality without compromising
portability. This is because the SPP language is an integral part of a carefully conceived, complete programming
environment, whereas C and Fortran are merely general purpose third generation programming languages. Because
it is specially designed for large scientific programming applications, the SPP language and associated programming
environment will never see widespread usage like C and Fortran, but for the same reasons it is ideally suited to our
applications.

5.2 SPP Language Interface

The IRAF SPP (subset preprocessor) language is a general purpose programming language modeled after C
but implemented as a Fortran preprocessor. Programming in SPP is conceptually very similar to programming in C;
the SPP language provides much the same basic facilities and syntax as C, including pointers, structures, automatic
storage allocation, define and include, C style character data type, and Ratfor style versions of all the usual control
constructs. The same problem will generally be solved the same way in both languages. Since the SPP language
resembles C but is translated into Fortran, SPP combines the software engineering advantages of C with the scientific
programming advantages of Fortran. In addition, since SPP is an integral part of the IRAF system, SPP provides
language level support for the VOS and for the IRAF programming environment in general.

The significance of the SPP language cannot be understood by studying only the language itself as one would
study C or Fortran. Rather, one must study the programming environment and the role played by the SPP language
in that environment. The major components of the IRAF programming environment are the SPP language, the VOS
(§6.1), the software tools, e.g., the xc compiler, mkpkg, etc. (§7.2), the applications libraries, e.g., xtools, and the
various math libraries, e.g., curfit, surfit, iminterp, etc (§5.6). Considered as a whole, these components define a
very rich programming environment. Few systems provide a programming environment of comparable capability, let
alone in a machine and device independent format.

- 8 -

The chief problem facing a programmer trying to write their first applications program in IRAF is learning the
programming environment and "how things are done" in IRAF. Learning the SPP language itself is generally a sim-
ple problem dispensed with in hours or days, depending upon the individual. While most people can be productively
generating new programs within a few days, weeks or months may be required to develop a deep understanding of
and fluency with the full environment. This is typical of any large software system capable of supporting sophisti-
cated applications programs, and demonstrates that porting applications programs and applications programmers
between different programming environments is a myth. In a sense, there are no (nontrivial) portable applications
programs, only transportable programming environments.

Since a program is only as portable as the environment it is written for, there are few portability advantages to
programming large applications in a standardized language (a case can however be made for purely numerical rou-
tines). In fact the opposite is often the case, since few if any compilers have ever been written which rigorously
implement a language standard and nothing more nor less. In the case of a language like Fortran, it is not uncom-
mon for half of the features offered by a particular manufacturer’s compiler to be nonstandard extensions to the for-
mal language standard, or even more dangerous, relaxations of subtle restrictions imposed by the standard. It is
difficult for a programmer to resist using such extensions even when they know what the nonstandard extensions are,
and usually a programmer will be more concerned with getting the program functioning as soon as possible than with
making it portable.

SPP
module preprocessor Host Fortran

module

translation
tables

Figure 7. Preprocessor Dataflow

The SPP language solves this problem by providing all the features the programmer needs directly in the
language, so that the programmer does not have to do without. If a new feature is needed and can be justified, it can
easily be added to the language since IRAF defines the SPP language standard. Since the SPP translator is part of
IRAF rather than part of the host system, there is only one translator and the problem of writing code which will be
accepted by a variety of host compilers is greatly minimized. The intermediate Fortran generated by the translator
uses only the most common features of Fortran, hence is intrinsically highly portable. The intermediate Fortran is
prettyprinted (indented to show the structure, etc., so that a human can read it) and may optionally be saved and used
for symbolic debugging with the host system debugger.

Since a mechanical translator is used to generate the host Fortran when an SPP program is compiled, nonstan-
dard host Fortran extensions can be used without compromising the portability of applications programs, by simply
modifying the host dependent tables used to drive the translation. Since the SPP compiler is part of the IRAF
environment rather than the host environment, it understands IRAF virtual filenames, an essential capability for
referencing global include files. The define-include facility itself is vital for parameterizing the characteristics of the
host machine and VOS configuration, as well as for structuring applications software. Since the SPP language places
an interface between IRAF applications programs and the host Fortran compiler, our considerable and ever growing
investment in applications software is protected from future changes in the Fortran standard.

As the name subset preprocessor implies, the SPP language implements a subset of a planned future language.
Most of the limitations of the current SPP language are due to the use of preprocessor technology to carry out the
translation. A much more powerful approach is to use a full syntax directed compiler with an associated code gen-
erator which generates host Fortran statements rather than assembler instructions. This will greatly improve compile
time error checking, increase the portability of both the applications software and the compiler, and will make it pos-
sible to include certain advanced features in the language for generalized image and vector processing. This is an
exciting area for future research, as compiler technology makes possible the solution of a large class of image pro-
cessing problems which cannot readily be addressed any other way.

In summary, the IRAF SPP language interface provides a rich scientific programming environment without
compromising program portability. Programmers using this environment can concentrate on the problem to be
solved without concern for the portability of the resultant software, and are free to use all of the facilities provided by

- 9 -

the language and the environment. All of the facilities one needs for a particular application are likely to either be
already available somewhere in the environment, or easily constructed using lower level facilities available in the
environment, and are guaranteed to be available in the same form on all IRAF host machines. The proof of the con-
cept of this interface is found in the current IRAF system, where thousands of files in hundreds of directories are rou-
tinely moved between quite different IRAF hosts, then compiled and run without any changes whatsoever.

5.3 Host Fortran Interface

The host Fortran program interface (IMFORT) is in most respects the opposite of the SPP/VOS programming
environment. The IMFORT interface is a small Fortran callable library which may be linked with host Fortran (or
C) programs to get the foreign task command line from the CL and perform some operation upon an IRAF image or
images. The host Fortran program may be declared as a foreign task in the CL and accessed much as if it were a
conventional IRAF task, using the CL to parse, evaluate, and concatenate the command line to be passed to the
foreign task as a string. As a foreign task, the host program may also be run outside the CL, using the host system
command interpreter, if desired.

The purpose of the IMFORT interface is to allow the existing Fortran programs in use at a site when IRAF
arrives to be modified for use within the IRAF environment with minimal effort. The interface is also useful for the
scientist who needs to write a small program and does not want to take the time to learn how to use the SPP/VOS
environment. The IMFORT interface consists of only a dozen or so routines hence almost no effort is required to
learn how to use the interface. Of course, the IMFORT interface does not provide access to the extensive facilities
of the SPP/VOS programming environment, hence is not suitable for the development of large programs. Programs
written using the IMFORT interface are generally not portable to other hosts, but this may not be a serious considera-
tion to scientists writing programs for their own personal use.

5.4 IRAF Fortran Interface

As noted earlier, IRAF does not currently have a Fortran applications programming interface, other than the
host Fortran program interface. An IRAF Fortran programming environment would provide a subset of the func-
tionality provided by the SPP environment as a higher level library of Fortran callable procedures. This differs from
the host Fortran interface in that the resultant programs would be fully integrated into IRAF, with potential access to
all SPP environment facilities, whereas the host Fortran interface provides only limited imagefile access and the abil-
ity to fetch the CL command line as a string, plus unrestricted access to host system facilities.

We are considering adding such an interface for the scientist/programmer who needs more than the IMFORT
interface but is unwilling or unable to invest the time required to learn to use the SPP environment. Unfortunately,
the lack of structures, pointers, dynamic memory allocation, define-include, filename translation, etc. in ANSI stan-
dard Fortran makes it prohibitively difficult to define a Fortran interface with capabilities comparable to the SPP pro-
gramming environment. Also, the resultant Fortran programs would inevitably use the nonstandard features of the
host Fortran compiler and hence would not be portable. If such an interface were made available and then used
extensively, it seems likely that it would gradually grow until it approximated the SPP environment in complexity,
without the advantage of the more elegant interface made possible by the SPP language.

If an embedded Fortran programming environment is ever added to IRAF it therefore makes sense only if the
environment is expressly designed with the scientist/programmer in mind. The interface should provide all the neces-
sary facilities for small scientific programs but nothing more, and it should be possible to become familiar with the
use of the interface in a day or less. Simplicity of use should be emphasized rather than efficiency. All large appli-
cations projects and all "user qualified" software should continue to be implemented in the SPP language and
environment.

5.5 C Language Interface

The IRAF C language interface (library LIBC) consists of a fairly complete UNIX STDIO emulation plus a C
binding for a systems programming subset of the IRAF VOS, comparable in capability to a V7 UNIX kernel. All of
the standard Berkeley UNIX STDIO facilities are provided, e.g., the definitions in the include files <stdio.h> and
<ctype.h>, and functions such as fopen, fread, fwrite, getc, putc, printf, scanf, malloc, and so on. The STDIO pro-
cedures are implemented as an interface to the IRAF VOS, hence calls to the VOS i/o procedures may be intermixed
with calls to the STDIO procedures, and the STDIO emulation is thus part of the portable system. No UNIX sources
are used hence a UNIX license is not required to use the interface. Existing UNIX/C programs may be ported to the
C language environment with minor modifications (some modifications are always required), assuming that the i/o
requirements of the programs are modest.

The C language interface is currently used only to support the CL, which is written in C primarily for histori-
cal reasons (the original CL was developed concurrently with the VOS). The C language interface could in principle

- 10 -

be expanded to include more VOS facilities, but the sheer size of the VOS and of the rest of the programming
environment makes this impractical. In any event, the SPP language is more suited to scientific programming, avoids
the portability problems of calling Fortran library procedures from C, and will always be better integrated into the
IRAF programming environment. The use of the C language interface is not recommended except possibly for port-
ing existing large systems programs written in C to IRAF.

5.6 Applications Libraries

The standard applications libraries currently available in IRAF are summarized in Figure 8. All libraries may
be called from SPP programs. Only the purely numerical Fortran libraries may be called from Fortran programs.
The sources for all libraries used in IRAF are included with the distributed system and are in the public domain. In
some cases the sources for the standard numerical libraries have had to be modified slightly to eliminate calls to the
Fortran STOP, WRITE, etc. statements, sometimes used in error handlers. Some major public domain math pack-
ages have yet to be installed in IRAF, e.g., for nonlinear least squares and for evaluating special functions, for the
simple reason that we haven’t needed them yet in our applications.

library description

bev Bevington routines (generally, these should be avoided)
curfit 1-D curve fitting package (SPP)
deboor DeBoor spline package
gks IRAF GKS emulator (subset of Fortran binding)
gsurfit Surface fitting on an irregular grid (SPP)
iminterp Image interpolation package, equispaced points (SPP)
llsq Lawson’s and Hanson’s linear least squares package
ncar NCAR graphics utilities, GKS version (uses GKS emulator)
nspp Old NCAR system plot package
surfit Surface fitting on a regular grid (SPP)
xtools General tools library for SPP applications programs

Figure 8. Applications Libraries (March 86)

The most heavily used numerical libraries in IRAF are those which were written especially for IRAF (marked
SPP in the figure). Our experience has been that most of the generally available interpolation, curve and surface
fitting packages are overly general and inefficient for use on bulk image data where the data points tend to be on an
even grid, or where the same X vector may be used to fit many Y vectors. The SPP based math packages are nicely
packaged, using dynamic memory allocation to internally allocate a descriptor and all working storage, and to hide
the details of which of the possible algorithms supported by a package is actually being used. The supported interpo-
lators include nearest neighbor, linear, cubic spline, and third and fifth order divided differences. The supported
curve types include linear spline, cubic spline, and the Chebyshev and Legendre orthogonal polynomials. As far as
possible the packages are vectorized internally using the VOPS operators, to take advantage of the vector processing
hardware anticipated on future machines.

6. The Virtual Operating System (VOS)

6.1 Major Components of the VOS

The primary functions of the VOS are to provide all the basic functionality required by applications programs,
and to isolate applications programs from the host system. The VOS defines a complete programming environment
suitable both for general programming and for scientific programming in particular. In addition to the standard facili-
ties one expects from a conventional operating system, e.g., file i/o, dynamic memory allocation, process control,
exception handling, network communications, etc., the VOS provides many special facilities for scientific program-
ming, e.g., a CL interface, image i/o (access to bulk data arrays on disk), and a graphics subsystem supporting both
vector graphics and image display devices. The major subsystems comprising the IRAF VOS are outlined in Figure
9.

- 11 -

CLIO command language i/o (get/put parameters to the CL)
DBIO database i/o (not yet implemented)
ETC exception handling, process control, symbol tables, etc.
FIO file i/o
FMTIO formatted i/o (encode/decode, print/scan)
GIO graphics i/o (both vector graphics and image display access)
IMIO image i/o (access to bulk data arrays on disk)
KI kernel interface (network communications)
LIBC UNIX stdio emulation, C binding for the VOS, used by the CL
MEMIO memory management, dynamic memory allocation
MTIO magtape i/o
OSB bit and byte primitives
TTY terminal control (termcap, graphcap access)
VOPS vector operators (array processing)

Figure 9. Major Subsystems Comprising the IRAF VOS

Although the VOS packages are normally presented as independent packages, there is naturally some vertical
structure to the packages. The highest level packages are GIO and IMIO, which depend upon many of the lower
level i/o packages. The most fundamental packages are FIO and MEMIO, which are used by everything which does
i/o. At the bottom are the KI (the kernel interface) and the kernel itself, which is part of the host system interface
(§7.3). All of the VOS code is portable with the exception of certain GIO graphics device kernels, hence the VOS is
functionally equivalent on all IRAF hosts.

Most of the capabilities provided by the VOS are already present in existing commercial operating systems or
in commercial or public domain libraries available for such systems. It is certainly possible to assemble a functional
reduction and analysis system by starting with the facilities provided by a particular host OS, obtaining a few
libraries, and building the rest of the software locally. This is the approach most organizations have followed, and it
certainly would have been a lot easier (and less controversial) for us to do the same rather than construct an entire
virtual operating system as we did.

The chief problem with the off-the-shelf approach is of course that the resulting programming environment is
unlikely to be very portable and would very likely be incomplete, forcing applications software to bypass the
environment and use host facilities to get the job done. Furthermore, it is hard to produce a consistent, efficient, well
engineered system by patching together independently developed subsystems, even if the individual subsystems are
very good considered all by themselves (and often they are not, nor are they often in the public domain). These
problems typically scale as some large power of the size of the system being developed. The off-the-shelf approach
shows results sooner, but in the long run it costs far more, particularly if the planned system is large and has to be
maintained in numerous configurations on numerous host machines.

The approach we have adopted results in a better system which is easier to port initially to a new machine
(because the host interface is small, well isolated, and well defined), and which is much easier to support once the
initial port has been carried out. The VOS subsystems are often quite large and are expensive to develop, but they
do exactly what we want, fit into the system just right, and once they have been developed they become a permanent
fixture in the environment requiring little or no maintenance, freeing our limited resources for interesting new pro-
jects.

6.2 The File I/O (FIO) Subsystem

At the heart of the VOS i/o subsystem is FIO, the file i/o interface. FIO makes a distinction between two
broad classes of file types, text files and binary files. The type of a file must be specified at open time, but once a file
has been opened file i/o is device independent. FIO supports a wide range of standard devices, e.g., disk resident
text and binary files, terminals, magtapes, line printers, IPC (interprocess communications channels), static files (can
be preallocated and mapped into virtual memory), network communications channels, the pseudofiles (see below),
and text and binary memory-buffer files. Device drivers for special devices may be dynamically loaded at run time
by applications programs, hence the FIO interface (and all programs which use FIO) may be used to access any phy-
sical or abstract device. For example, an applications program may interface an image display device as a binary file
and then use IMIO to access the display.

Text files are stored on disk in the host system text file format, e.g., in a format acceptable to host system text
file utilities such as an editor or file lister. Reading or writing a text file implies an automatic conversion between the
IRAF internal format and the host system format. The internal format is a stream of ASCII characters with linefeed
characters delimiting each line of text (as in UNIX). The text file abstraction is required in a portable system to be
able to use the host utilities on text files generated by the portable system, and vice versa.

- 12 -

Binary files are unstructured byte stream arrays; data is written to and read from a binary file without any
form of conversion. There are two subclasses of binary files, the streaming binary files, and the random access
binary files. The streaming files can only be read and written sequentially; examples are IPC and magtape. Random
access binary devices are assumed to have a fixed device block size which may differ for each device. A binary dev-
ice is characterized by device dependent block size, optimum transfer size, and maximum transfer size parameters
read dynamically from the device driver when a file is opened on the device. By default FIO configures its internal
buffers automatically based on the device parameters, but the buffer size for a file may be overridden by the user pro-
gram if desired.

FIO supports a special builtin type of file called the pseudofile, a binary streaming file. The pseudofile
streams are opened automatically by the system when a task is run. The pseudofile streams of interest to applications
programs are STDIN, STDOUT, and STDERR (the standard input, output, and error output streams), and
STDGRAPH, STDIMAGE, and STDPLOT (the standard vector graphics, image display, and plotter streams). These
streams are normally connected to the terminal, to a graphics device, or to a file by the CL when a task is run. The
user may redirect any of these streams on the command line. Pseudofile i/o is multiplexed via IPC to the CL process
whence it is directed to the physical device, graphics subkernel, or file connected at task initiation time. Graphics
frames output to STDGRAPH are spooled in a buffer in the CL process so that the user may later interact with the
graphics output in cursor mode (§6.6).

The top level FIO procedures are stream oriented. The FIO user interface is a simple open-close, getc-putc,
getline-putline, read-write-seek, etc. interface which is quite easy to use. Character data may be accessed a character
at a time or a line at a time; terminal i/o is normally a line at a time but a raw mode is provided as an option (this is
used for keystroke driven programs such as screen editors). Binary data may be read and written in chunks of any
size at any position in a file. On random access devices a seek call is required to position within the file. FIO han-
dles record blocking and deblocking, read ahead and write behind, etc., transparently to the applications program.
An asynchronous, unbuffered, block oriented, direct to user memory interface is also provided for applications with
unusual performance requirements (for binary files only).

6.3 FMTIO, MEMIO, TTY, VOPS, ETC

The formatted i/o interface (FMTIO) is concerned with formatting output text and decoding input text. The
primary high level stream oriented procedures scan, fscan, printf, fprintf, sprintf, etc., are modeled after the UNIX
facilities for which they are named. A set of low level string oriented procedures provide a variety of numeric
encode/decode functions, a set of general string operator functions, some lexical analysis functions, and a general
algebraic expression evaluation function. The FMTIO numeric conversion routines fully support indefinite valued
numbers (INDEF).

The memory i/o interface (MEMIO) provides a dynamic memory allocation facility which is heavily used
throughout the IRAF system. Both heap and stack facilities are provided. The high level heap management pro-
cedures malloc, calloc, realloc, and mfree are modeled after the comparable UNIX procedures, although there are
some minor differences. An additional procedure vmalloc is provided to allocate buffers aligned on virtual memory
page boundaries. A pair of procedures begmem and fixmem are provided to dynamically adjust the working set size
at runtime, or to simply query the amount of available physical memory if the working set cannot be adjusted. This
is used to dynamically tune large-memory algorithms to avoid thrashing. The stack procedures are used mainly to
simulate automatic storage allocation, with the advantage that the amount of space to be allocated is a runtime rather
than compile time variable. MEMIO relies heavily upon the pointer facility provided by the SPP language.

The terminal capabilities database interface (TTY) provides a basic screen management capability for termi-
nals. The TTY interface uses the Berkeley UNIX termcap terminal database, which supports dozens of terminals
and which is easily extended by the user. The database capabilities of the TTY interface are also used for the line
printer interface and for the IRAF graphcap database, used to store device dependent information describing the
various graphics terminals, image displays, and plotters supported by IRAF.

The vector operators interface (VOPS) is a large library of subroutines, each of which performs some simple
operation on one or more one dimensional arrays. Operators provided include the arithmetic operators, sqrt, power,
abs, min, max, reciprocal, the trig functions, a full matrix of type conversion operators, fill array, clear array, memory
to memory copy, a set of boolean operators, sort, statistical functions (median, average, etc.), rejection mean,
weighted sum, lookup table operations, vector interpolation, inner product, vector sum, sum of squares, various linear
transformations, convolution, fourier transform operators, and so on. The VOPS operators are written in a generic
dialect of the SPP language and are expanded into a full set of type specific operators by the generic preprocessor
before compilation and insertion into the VOPS library. A full range of datatypes is supported for each operator,
including type complex where appropriate.

Using the conditional compilation facilities provided by mkpkg, selected VOPS operators may be hand

- 13 -

optimized in assembler or host specific Fortran (e.g., using Fortran vector extensions on vector machines) without
compromising the portability of the system. Similarly, selected VOPS operators might be implemented in an array
processor on a host which has one; ideally the array processor should be tightly coupled to the cpu for this to be
worthwhile (a shared memory interface using MEMIO support is possible). The VOPS operators are used heavily
throughout IRAF with the expectation that vector machines will become increasingly common in the future.

The ETC package is the catch-all for those VOS facilities too small to warrant full fledged package status.
Major ETC subpackages include the process control facilities, used to spawn and control connected subprocesses
and detached processes, the exception handling facilities, used to trap interrupts, post signal handlers, etc., and the
environment (logical name) facility. ETC also contains the date and time facilities, the device allocation facilities,
a general purpose symbol table facility, and a number of other subpackages and miscellaneous system procedures.
IRAF relies upon the environment facilities to map virtual filenames to host filenames and to assign logical names to
physical devices. The VOS automatically propagates the environment and current default directory to connected sub-
processes.

6.4 The Command Language I/O (CLIO) Subsystem

The CL is almost completely invisible to the applications program. The CLIO interface consists of little more
than a set of get/put procedures for CL parameter i/o. Parameters may be accessed either by name or by the offset of
the parameter in the command line. A task may query the number of positional parameters on the command line, or
whether a particular pseudofile stream has been redirected on the command line.

The CLIO interface is very simple at the applications level; all of the complexity and power of the interface is
hidden behind the CLIO interface in the CL itself. Parameter requests may be satisfied either directly by the applica-
tions process, i.e., when it is run outside the CL, or by the CL at task invocation time or while the task is executing.
The CL (i.e., the user) determines how a parameter request is satisfied transparently to the applications program.
Some parameter requests result in interactive queries, others are satisfied immediately without a query. If a task
repeatedly requests the same CL parameter, a different value may be returned for each request, allowing tasks to be
used interactively. By assigning a text file containing a list of values to such a parameter, the user may run such
tasks in batch mode. The graphics and image display cursors are implemented as CL parameters, and cursor input
may be either interactive (causing cursor mode to be entered) or batch (input is taken from a text file assigned to the
cursor type parameter by the user).

6.5 The Image I/O (IMIO) Subsystem

The IMIO interface is used to access bulk data arrays or images (rasters, pictures) normally stored in random
access binary files on disk. An image consists of an N-dimensional array of pixels and an associated image header
describing the physical and derived attributes of the image. Arbitrary user or applications defined attributes may be
stored in the image header. The present interface supports images with from zero to seven axes. There are no builtin
limits on the size of an image since all data buffers are dynamically allocated. The datatype of the pixels in an image
may be any SPP datatype, i.e., short (signed 16 bit integer), long, real, double, or complex, or the special disk only
datatype ushort (unsigned 16 bit integer).

IMIO is primarily a conventional binary file i/o type of interface. While it is possible to map all or portions of
an image into virtual memory if the host system supports such a facility and if a number of runtime conditions are
met, all current IRAF applications use only the conventional binary file i/o access method. This is necessary for full
portability (a true virtual memory machine is not required to run IRAF) and furthermore is the most flexible and
efficient type of access for the majority of our image processing applications. While there are some difficult image
analysis applications which benefit significantly from the use of virtual memory, most applications access the entire
image sequentially and can easily be programmed using binary file i/o. Sequential whole image operators are most
efficiently implemented using binary FIO; the heavy page faulting resulting from sequential image access via a vir-
tual memory interface places a greater load on the system. More importantly, the price of using virtual memory is
the loss of data independence, which greatly limits the flexibility of the interface.

While IMIO imposes certain restrictions upon the logical representation of an image as seen by an applications
program, there are few restrictions on the physical storage format, and indeed IMIO is capable of supporting multiple
disk data formats, including site dependent formats if desired. The primary restriction on the physical storage format
is that images are assumed to be stored in a noninterleaved line storage mode, i.e., like a Fortran array, although the
image lines may be aligned on device block boundaries if desired. While no other storage modes are supported by
the current interface, we hope to add support for band interleaved, binary nested block (BNB), etc. storage modes in
the future. An efficient implementation of the BNB storage format which preserves data independence will probably
require language support.

The IMIO user interface consists primarily of a set of procedures to get/put image lines and subrasters. The

- 14 -

high level IMIO routines are written in generic SPP and a version of each i/o procedure is available for each SPP
datatype, allowing programs to be written to deal with any single datatype or with multiple datatypes. The IMIO
interface will automatically coerce the datatype of the pixels when i/o occurs, if the type requested by the applica-
tions program does not match that on disk.

Much of the flexibility and efficiency inherent in the IMIO interface derives from the fact that pixel data is
buffered internally in IMIO, returning a pointer to the buffered line or subraster to the user, rather than copying the
data to and from the user buffer. This makes it possible for IMIO to return a pointer directly into the FIO buffer if
all the right conditions are met, avoiding a memory to memory copy for the most efficient possible i/o. Leaving the
buffer management to IMIO also makes the interface easier to use.

IMIO provides a number of optional features which make certain common types of image applications easier
to code. The number of input line buffers may be set by the user to some value greater than one, allowing the use of
a scrolling region for filtering applications. A program may optionally reference beyond the boundary of an image,
with IMIO using the specified boundary extension technique (nearest neighbor, constant value, reflect, wrap around,
etc.) to generate values for the out of bounds pixels. This is useful for convolution or subraster extraction applica-
tions to avoid having to deal with the boundary region as a special case.

Perhaps the most novel, most popular, and most useful feature of IMIO is the built in image section capabil-
ity. Whenever the user enters the name of an image they may optionally append an image section to specify the sub-
set of pixels in the image to be operated upon. For example, if image pix is a 512 square, 2-dimensional image,
then pix[*,-*] is the same image flipped in Y, pix[*,55] is a one dimensional image consisting of line 55 of
the image, pix[19:10,50:69:2] is a 10 by 10 subraster obtained by flipping in X and subsampling by 2 in Y,
and so on. If cube is a three dimensional image, cube[*,*,5] is band 5 of the image cube (a two dimensional
subimage), cube[*,5,*] is the XZ plane at Y=5, and so on. The image section is processed by IMIO when the
image is opened, transparently to the applications program, which sees what appears to be a smaller image, or an
image of lesser dimensionality than the original. The image section facility is automatically available for any pro-
gram that uses IMIO, and is only possible by virtue of the data independence provided by the interface.

6.6 The Graphics I/O (GIO) Subsystem

For many scientific applications programs, fast interactive graphics is the key to a good user interface. High
quality graphics hardcopy is likewise essential for presenting the final results of data analysis programs. These
requirements are the same both for vector graphics applications and for image processing applications, and ideally the
same interface should serve both types of applications. Not everyone has ready access to an image display, so it
should be possible to run software intended for use with an image display device on a graphics terminal. Likewise, it
should be possible to overlay vector graphics on an image display, even if the graphics program was intended for use
on a graphics terminal. While an interactive cursor driven graphics interface is desirable for interactive reductions,
one should not be forced to use a program interactively, hence the graphics system should allow any cursor driven
graphics program to be used noninteractively as well. Lastly, since a great variety of graphics and image display
devices are in use and more are being developed every day, the graphics system must make it as easy as possible to
interface to new devices and to support multiple devices.

These were the primary performance requirements which the IRAF graphics i/o subsystem (GIO) was
designed to meet. GIO provides a uniform, device independent interface for graphics terminals, graphics worksta-
tions, raster and pen plotters, laser printers, and image display and image hardcopy devices. GIO is one of the larg-
est subsystems in IRAF, and is unlike most of the IRAF interfaces in that it is not completely self contained, but
rather is designed to make use of existing non-IRAF graphics packages such as GKS, CORE, NCAR, and so on.
Nonetheless, GIO does provide all of the software necessary to meet its primary requirement of providing fast
interactive graphics for IRAF applications normally run on a graphics terminal. GIO can be interfaced to virtually
any graphics terminal without modifying or writing any software, and without relinking any executables.

- 15 -

applications
program

NCAR GKS
emulator

GIO(graphics output)

GKS
emulator

GKI
metacode

cursor
mode

graphics
kernel

graphics
device

CLIO
cursor
listfile(cursor input)

(applications process) | (CL) | (CL or subkernel)

Figure 10. GIO Dataflow

The major components of the GIO subsystem and the flow of data between them (graphics output and cursor
input) are shown in Figure 10. A different, somewhat simplified view emphasizing the process structure is given in
Figure 2. The first thing to note is that normally only a portion of the graphics system is linked into an applications
program. This reduces the size of applications programs, makes it possible to add support for new graphics devices
without relinking the system, increases concurrency on single user systems, reduces physical memory requirements
on multiuser systems (since multiple users can share the memory used by the graphics kernel process), reduces
startup time (since the same kernel process can be used by many tasks), and reduces the need to worry about memory
utilization in the graphics kernels, since the kernel has an entire process to itself.

Applications programs normally contain only the device independent, output oriented part of the graphics sys-
tem. This includes any high level graphics packages such as the NCAR utilities and the GKS emulator, the GIO axis
drawing and labelling code, and that part of GIO which transforms vectors input in world coordinates into clipped
NDC (normalized device) coordinates. The graphics output of an applications program consists of GKI metacode, a
device and machine independent stream of 16 bit signed integer graphics instruction opcodes and data.

The GKI opcodes, as well as the lowest level GIO interface procedures available to the programmer, resemble
the graphics primitives of the GKS standard, i.e., polyline, polymarker, polytext, fill area, cell array, and so on. The
GIO programmer interface includes several layers of higher level calls based on these primitives, providing every-
thing likely to be needed by applications software, e.g., autoscaling routines, coordinate transformations, multiple
world coordinate systems including optional log scaling in either axis, both relative and absolute drawing commands
(these build up polylines internally), mark drawing routines, vector plotting routines, the standard axis drawing and
labelling routines, and so on.

The primary component of the GIO user interface is the cursor mode facility. The graphics system makes a
clear distinction between graphics output and cursor input. Often the task which reads the graphics cursor is different
than that used to generate the graphics output. When a graphics frame is output, the world coordinate systems
(WCS) associated with the frame and all or part of the frame itself (a stream of GKI metacode instructions beginning
with a screen clear) is saved in a cursor mode frame buffer in the CL process.

Sometime later the cursor position may be read by the task which generated the frame, by a different task, or
by the user by typing a command into the CL. This causes cursor mode to be entered; cursor mode is terminated
when the user types a lower case or nonalphanumeric key on the terminal. The cursor position is returned encoded
as a string consisting of the fields X, Y, WCS number, key typed, and an optional character string entered by the
user. While in cursor mode the user may zoom and pan the buffered frame, repaint the screen, print the cursor posi-
tion in world coordinates, draw axes around the current window into the buffered frame, annotate the frame, save the
frame in a metacode file or reload the frame from such a file, take a "snapshot" of the frame on a plotter device, and
so on. Cursor mode reserves the upper case keystrokes for itself, leaving the lower case keystrokes and most of the
nonalphanumeric characters for the applications program.

The GKI metacode output by an applications program is normally transmitted via IPC or the network interface
to the CL process and then on to a graphics kernel, which may be linked directly into the CL process or which may
reside in a subkernel, i.e., in a CL subprocess connected upon demand by the pseudofile i/o system. GKI metacode
may also be spooled in a file by specifying the graphics output device vdm (virtual device metafile), by redirection of
the graphics stream on the command line, or by running the applications process outside the CL with the graphics
stream redirected into a file. A variety of utilities are provided for operations upon metacode files, e.g., for decoding
the GKI instructions in a metacode file (useful for debugging), for extracting frames from a metacode file, for

- 16 -

printing a directory of the frames in a metacode file, for generating a new metacode file wherein each frame contains
a mosaic of N of the frames in the input metacode file, and so on. Spooled metacode may be used as input to any
graphics kernel to make plots on any device supported by that kernel.

All of the pieces of the graphics subsystem thus far discussed have been device independent. The device
dependent part of the graphics system is the GIO graphics kernel. The function of a graphics kernel is to convert a
stream of GKI metacode instructions into device instructions to control the device or to perform i/o to the device.
Since all WCS to NDC coordinate transformations and clipping are handled by the device (and kernel) independent
GIO software, the graphics kernel sees only integer NDC coordinates in the range 0 to 32767. The graphics kernel is
an independent module in the system, and GIO may support any number of distinct graphics kernels. A GIO kernel
may be a direct interface to a particular device, or an interface to an external graphics library which may support any
number of physical or logical devices.

The IRAF system includes one graphics kernel which is completely portable and hence available on any sys-
tem. The STDGRAPH (standard vector graphics) kernel is used for interactive graphics on the user’s graphics termi-
nal. To provide the fastest possible response for interactive applications, the STDGRAPH kernel is linked directly
into the CL process. The STDGRAPH kernel is capable of i/o to virtually any graphics terminal which has a serial
interface. A graphcap entry for the device must be provided to tell the STDGRAPH kernel the characteristics of the
device, e.g., how to encode a pen motion command, the resolution of the device, how to plot text, the number of
hardware text fonts available, and so on. Tektronix compatible terminals are the most common, but the graphcap
facility is general enough to describe most other terminals as well (in fact, the more smarts the terminal has the
better). A graphcap entry is a runtime table typically consisting of less than a dozen lines of text; new entries can
easily be added by the user.

A GIO kernel is implemented as a library, consisting of a pair of open-kernel and close-kernel subroutines,
plus one subroutine for each GKI instruction. The GKI interface (graphics kernel interface) may be used to call the
kernel subroutines either directly, i.e., if the kernel is linked into the same process as the program using GIO, or
indirectly via a GKI metacode data stream transmitted via pseudofile i/o if the kernel resides in a different process.
All GIO kernels are also installed in the system linked into compiled IRAF tasks callable either as subkernels by the
pseudofile i/o system, or by the user as a conventional CL task. When called as a subkernel the GIO kernel reads
metacode from a pseudofile stream; when called as a CL task the kernel reads metacode from a file.

The IRAF system currently (March 86) provides kernels for the old NCAR system plot package, for the Cal-
comp graphics library, and for the SUN-3 implementation of the proposed CGI standard. Eventually, GIO kernels
should be available for GKS, CORE, and possibly other standard graphics libraries as well. If a kernel is not already
available for the host system and graphics devices used at a particular site, it should not be difficult to generate a new
kernel by modifying one of the existing ones. Often it should only be necessary to relink one of the GIO kernels
supplied with the system with the local GKS, Calcomp, etc. library to get a functional kernel. As a last resort, a new
GIO kernel can be built to talk directly to a specific physical device.

The current GIO subsystem supports vector graphics and batch plotter devices quite well, but has not yet been
used extensively for imaging devices because there is no standard graphics interface for these devices. A standard
set of Fortran callable subroutines for interfacing to imaging devices is currently being defined by an international
consortium of astronomical centers. Our intention is to build a GIO kernel which uses this device independent image
interface as soon as the interface definition is complete. Implementations of the interface subroutines for the half a
dozen or so types of image displays used at NOAO are also planned. Once the image display interface subroutines
are defined and a GIO kernel which uses them is in place, users will be able to interface new image devices to IRAF
by implementing the standard subroutines, relinking a few executables, and adding a graphcap entry for each new
device.

For more detailed information on the design of the GIO subsystem, including specifications for the interface
subroutines, for the graphcap facility, and so on, the reader is referred to the document Graphics I/O Design (March
85), which is available from the author.

6.7 The Database I/O (DBIO) Subsystem

The DBIO subsystem is the only subsystem in the original VOS design remaining to be implemented. DBIO
will be used for image header storage, for intermodule communication in large packages, and for the storage of large
catalogs such as those produced by analysis programs as well as existing astronomical catalogs. DBIO will be essen-
tially a record manager type interface. The related CL package DBMS will provide a relational database interface to
catalogs and other data maintained under DBIO. The planned database subsystem is a major facility comparable in
size and complexity to the existing graphics subsystem. The reader is referred to the document Design of the IRAF
Database Subsystem (draft, October 85) for additional information on DBIO and DBMS, including a discussion of
some of the potential applications of database technology to astronomy.

- 17 -

6.8 Networking Facilities

The portable IRAF system includes support for network access to any physical resource resident on a remote
node, including disk binary and text files, magtape devices, terminals, image displays, printer/plotters, and even sub-
processes and batch queues. Since this facility is provided by the portable IRAF system the network nodes do not
have to run the same operating system. It is permissible for the nodes to be architecturally incompatible computers,
provided the higher level IRAF systems or applications software maintains data externally in a machine independent
format.

The broad scope of the IRAF networking facilities is made possible by the fact that all access to host system
resources in IRAF has to go through the IRAF kernel, a part of the host system interface (§7.3). The IRAF network-
ing capability is provided by a VOS package called the kernel interface (KI). The KI is a sysgen option in IRAF
and is not required to run the system on a single node. The relation of the KI to the rest of the VOS and to the IRAF
kernel is illustrated in Figure 11.

VOS

KI

local
kernel

kernel
server

remote
kernel

network
channel (etc)

Figure 11. The Kernel Interface

In an IRAF system configured without networking, the VOS code directly calls the procedures forming the
IRAF kernel for the local node. In a system configured with networking, the VOS code calls instead KI procedures
which are functionally equivalent to the regular kernel procedures. If the kernel resource resides on the local node
the KI procedure merely calls the corresponding kernel procedure on the local node, hence the KI adds a fixed over-
head of one procedure call when it is present in a system but not used to access remote nodes. If the kernel resource
resides on a remote node, the KI encodes the procedure call in a machine independent format and passes it to a ker-
nel server on the remote node via a data stream network interface, returning any output arguments to the local VOS
via the same interface.

A remote resource is referenced by prefixing the resource name with the node name and an exclamation char-
acter, i.e., node!resource. For example, the command "page lyra!dev$graphcap" might be entered to page
the graphcap file on node lyra. Logical node names may be defined to avoid introducing site dependent infor-
mation into resource names in portable code. When the first reference to a resource on a remote node is received the
KI "connects" the remote node, i.e., it spawns a kernel server process on the remote node. The kernel server remains
connected until the client process on the local node terminates, or until an i/o error occurs on the KI channel. In the
current implementation of the KI, each client process on the local node requires a dedicated kernel server process on
the remote node. A future implementation of the KI may permit a single server process to serve an entire process
tree on the local node.

The beauty of the kernel interface is that since it intercepts all kernel requests it automatically provides such
exotic network services as the ability to interactively access a remote graphics device, or to spawn and interactively
run a subprocess on the remote node, without requiring any changes to the VOS or to applications software. Further-
more, implementation of the KI required no changes to the IRAF kernel (which is unaware that the KI exists), and
the KI software itself is portable, as is the kernel server task. The only machine dependent software required is a
FIO binary file driver capable of "opening" a "file" (spawning a kernel server process) on a remote node, and provid-
ing bidirectional binary communications with the remote server.

- 18 -

The network interface is currently in regular use at NOAO for remote image display, plotter, and file access
between VAX nodes running both UNIX and VMS, using a TCP/IP network interface and Ethernet hardware. For
example, a user on node A might make a line plot of an image resident on node B, enter cursor mode, and use the
"snapshot" facility to dump the plot to a laser printer on node C. We have not yet made use of the remote process
and batch queue capabilities. A DECNET interface also exists and will soon be tested in a MicroVax to mainframe
configuration.

7. The Host System Interface (HSI)

7.1 Major Components of the Host System Interface

The host system interface (HSI) is the interface between the portable IRAF system and a particular host
operating system. While the HSI contains all of the machine dependent or potentially machine dependent code in
IRAF, much of the code in the HSI is actually fairly portable. To port IRAF to a new operating system one must
implement the HSI. Once the HSI has been implemented for a new OS, the entire VOS and all of the IRAF system
packages and NOAO science packages will in principle compile and run without modification (in reality, some test-
ing and bug fixes are always required). Note that once IRAF has been ported to a new host OS, i.e., once the HSI
has been implemented for a particular host OS, one must still configure the site and device dependent tables for a
particular host to install IRAF on that host.

The HSI currently consists of the following components. The IRAF kernel is a subroutine library containing
all the host dependent primitive functions required by the VOS, and is usually the most machine dependent part of
the HSI, and the major item to be implemented in a port. The bootstrap utilities are a set of utility programs
required to compile and maintain the main IRAF system; these are written in C and are mostly portable (they use the
kernel facilities when possible). The hlib library is a directory containing a number of host and site dependent com-
pile and run time tables used to parameterize the characteristics of the host system. The as directory contains the
source for any library modules which have been written in assembler for one reason or another; while IRAF currently
requires only one assembler module, any library module may be hand optimized in assembler if desired, without
compromising the portability of the system. Lastly, the gdev directories contain the host dependent i/o interfaces for
any binary graphics devices supported by otherwise machine independent GIO kernels. Often it is possible to write a
portable (but device dependent) GIO kernel if the i/o functions are factored out into a separate interface.

7.2 The Bootstrap Utilities Package

The bootstrap utilities are required to compile and maintain the rest of the IRAF system. Since the bootstrap
utilities must run before IRAF does, they are implemented as foreign tasks callable either from the host system or
from the CL. Since the bootstrap utilities are required to compile and maintain the VOS as well as the rest of the
portable system, they do not use the VOS facilities. Rather, they use a special bootlib library which requires some
direct access to host facilities but which mostly uses the kernel facilities.

generic The generic preprocessor
mkpkg The "make package" library and package maintenance tool
rmbin Removes binary files in a directory tree
rmfiles Removes classes of files in a directory tree
rtar Reads TAR format tape or disk files
spp The XC compiler for the SPP language
wtar Writes TAR format tape or disk files
xyacc YACC compiler-compiler for SPP (requires UNIX license)

Figure 12. The Bootstrap Utilities

The bootstrap utilities are summarized in figure 12. The major utilities are the mkpkg program and the xc
compiler; both of these are required to compile and maintain the portable IRAF system. The rmbin and rmfiles utili-
ties are used to strip all binaries from the system prior to a full sysgen, or to strip all sources from a runtime system
to save disk space. The tar format reader/writer programs are used to transport directory trees between IRAF sys-
tems running on different host operating systems. For example, one might use wtar to make a source only archive of
a package in a disk file on a UNIX node, push the file through the network to a VMS node, unpack the archive with
rtar, and compile and link the new package with mkpkg, all without any knowledge of the contents of the package
and without editing any files (we do this all the time). The xyacc utility is used to make SPP parsers. This utility is
not needed other than on our software development machine, since the output of the utility is an SPP module which
can be compiled and used on any IRAF host.

- 19 -

7.3 The IRAF Kernel

The IRAF kernel (also known as the OS package) is a library of fifty or so files containing a number of For-
tran callable subroutines. The kernel procedures may be written in any language provided they are Fortran callable;
all current IRAF kernels are written in C. As far as possible, IRAF is designed to implement all complex functions
in the VOS, making the kernel as simple as possible and therefore easier to implement for a new host. The kernel is
a well defined, well isolated interface which can be implemented according to specifications without any knowledge
of the rest of the system. The current 4.2BSD UNIX/IRAF kernel contains 5900 lines of C code (something like
three percent of the full system), half of which is probably in the various FIO device drivers. The IRAF kernel is
discussed in detail in the document A Reference Manual for the IRAF System Interface (May 84).

Conclusions

The IRAF system provides a large and steadily growing capability for the reduction and analysis of astronomi-
cal data, as well as a general purpose image processing and graphics capability useful for image data of any type.
The system itself is nonproprietary and no proprietary external libraries are required to run IRAF. IRAF is a
machine and device independent system, hence is easily ported to many current machines as well as to future
machines. IRAF provides a complete modern programming environment suitable for general software development
and for scientific software development in particular.

IRAF has been designed from the beginning with the capabilities of the next generation of computers in mind,
hence the system is designed to make use of the vector hardware, networking facilities, bit-mapped graphics displays,
large memories, and personal workstations expected to become increasingly available during the next decade. The
system has been designed and implemented to a consistently high standard, and the combination of a modern design
and many advanced capabilities, plus a high degree of efficiency, portability and device independence insure that the
system will continue to grow in capability and use in the years to come.

Acknowledgments

The author wishes to acknowledge the efforts of the many people who have contributed so much time, energy,
thought and support to the development of the IRAF system. Foremost among these are the members of the IRAF
development group at NOAO (Lindsey Davis, Suzanne Hammond, George Jacoby, Dyer Lytle, Steve Rooke, Frank
Valdes, and Elwood Downey, with help from Ed Anderson, Jeannette Barnes, and Richard Wolff) and members of
the VMS/IRAF group at STScI (Peter Shames, Tom McGlynn, Jim Rose, Fred Rommelfanger, Cliff Stoll, and Jay
Travisano).

The continuing patience and understanding of members of the scientific staff at both institutions has been
essential to the progress that has so far been achieved. A major software project such as IRAF cannot be attempted
without the cooperation of many individuals, since the resources required must inevitably place a drain on other
activites. In particular, the support and encouragement of Buddy Powell, Harvey Butcher, and Garth Illingworth was
of critical importance during the first years of the project. In recent years the support of John Jefferies, Steve Ridg-
way, and Ethan Schreier has been invaluable. Mention should also be made of Don Wells, who in 1978 started in
motion the process which eventually led to the creation of the IRAF system.

References

The references listed here pertain only to the IRAF system software. Unless otherwise noted, all papers are by
the author. These are mostly design documents; comprehensive user documentation for the programming environ-
ment is not yet available. Considerable additional documentation is available for the IRAF system packages and for
the NOAO and STScI science packages. Contact the responsible institution directly for information on the science
software.

1. Shames, P.M.B, and Tody, D., A User’s Introduction to the IRAF Command Language Version 2.0, revised
February 1986. The current user’s guide to the CL.

2. Detailed Specifications for the IRAF Command Language, January 1983. The original CL design paper. No
longer accurate or comprehensive, but still contains useful information about the inner workings of the CL.

3. IRAF Standards and Conventions, August 1983. Coding standards, program design principles, portability con-
siderations for programming in the SPP environment.

4. A Reference Manual for the IRAF Subset Preprocessor Language, January 1983. The most up to date documen-
tation currently available for the SPP language proper.

- 20 -

5. The Role of the Preprocessor, December 1981. The original design document for the SPP language. Primarily of
historical interest. Documents the reasoning which led to the decision to use a preprocessor language in IRAF.

6. Programmer’s Crib Sheet for the IRAF Program Interface, September 1983. Summarizes the contents of the
various i/o subsystems comprising the VOS. Somewhat out of date, but still useful.

7. Graphics I/O Design, March 1985. Specifications for the graphics i/o subsystem. Reasonably up to date.

8. Design of the IRAF Database Subsystem, draft, October 1985. Presents the conceptual design of the planned
database subsystem.

9. A Reference Manual for the IRAF System Interface, May 1984. An essential document describing the IRAF ker-
nel, including the principles of operation and specifications for the kernel routines.

10. UNIX/IRAF Installation and Maintenance Guide, March 1986.

11. VMS/IRAF Installation and Maintenance Guide, March 1986.

12. A Set of Benchmarks for Measuring IRAF System Performance, March 1986. Contains comparative benchmarks
for IRAF running on VAX/UNIX, VAX/VMS (750,780,8600), the SUN-3, and additional machines in the
future.

